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A Riemann problem with prescribed initial conditions will produce one of three
possible wave patterns corresponding to the propagation of the different disconti-
nuities that will be produced once the system is allowed to relax. In general, when
solving the Riemann problem numerically, the determination of the specific wave
pattern produced is obtained through some initial guess which can be successively
discarded or improved. We here discuss a new procedure, suitable for implementation
in an exact Riemann solver in one dimension, which removes the initial ambiguity
in the wave pattern. In particular we focus our attention on the relativistic velocity
jump between the two initial states and use this to determine, through some analytic
conditions, the wave pattern produced by the decay of the initial discontinuity. The
exact Riemann problem is then solved by means of calculating the root of a nonlinear
equation. Interestingly, in the case of two rarefaction waves, this root can even be
found analytically. Our procedure is straightforward to implement numerically and
improves the efficiency of numerical codes based on exact Riemann solvers.

1. Introduction
The general Riemann problem is based on the calculation of the one-dimensional

temporal evolution of a fluid which, at some given initial time, has two adjacent states
characterized by different values of uniform velocity, pressure and density. From a
mathematical point of view, the Riemann problem is an initial value problem for a
hyperbolic system of partial differential equations, with initial conditions characterized
by a discontinuity between the two initial states. These initial conditions establish the
way in which the discontinuity will decay after removal of the barrier separating the
initial ‘left’ and ‘right’ states. The schematic evolution of a general Riemann problem
can be represented as (Martı́ & Müller 1994)

LW←L∗CR∗W→R, (1.1)

whereW denotes a shock or a rarefaction wave that propagates towards the left (←)
or the right (→) with respect to the initial discontinuity, L and R are the known initial
left and right states, while L∗ and R∗ are the new hydrodynamic states that form
behind the two waves propagating in opposite directions. These waves are separated
by a contact discontinuity C and therefore have the same values of the pressure and
velocity, but different values of the density (although the contact discontinuity might
also be trivial so that the density may not be discontinuous). The Riemann problem is
said to be solved when the velocity, pressure and density in the new states L∗ and R∗
have been computed, as well as the positions of the waves separating the four states.
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The solution of the one-dimensional Riemann problem in relativistic hydrodynamics
was discussed in the general case by Martı́ & Müller (1994) and the reader is referred
to their work for further details (see also Pons, Martı́ & Müller 2000, for the extension
to multi-dimensions).

The numerical solution of a Riemann problem is the fundamental building block
of hydrodynamical codes based on Godunov-type finite difference methods. In such
methods, the computational domain is discretized and each interface between two
adjacent grid zones is used to construct the initial left and right states of a ‘local
Riemann problem’. The evolution of the hydrodynamical equations is then obtained
through the solution across the computational grid of the sequence of local Riemann
problems set up at the interfaces between successive grid zones (see Martı́ & Müller
1996, and also Godunov 1959 and Colella & Woodward 1984). The ‘core’ of each
of these local Riemann problems consists of determining the fluid pressure across
the contact discontinuity, which can be calculated by imposing the continuity of the
normal component of the fluid velocity across C

vL∗(p∗) = vR∗(p∗). (1.2)

In general, (1.2) is a nonlinear algebraic equation in the unknown pressure p∗ and
requires a numerical solution. Depending on the different wave patterns forming after
the decay of the discontinuity, a different nonlinear equation will need to be solved†.
This initial ‘ambiguity’ in the wave pattern produced corresponds to the fact that
the interval in pressure bracketing the solution p∗ is not known a priori. In practice
this lack of information is compensated by the use of efficient numerical algorithms
which, via a process of trial and error, determine the correct wave pattern and then
proceed to the solution of the corresponding nonlinear equation (Martı́ & Müller
1999).

In this paper, we show that the relativistic expression for the relative velocity
between the two initial states is a function of the unknown pressure p∗ and so a new
procedure for numerically solving the exact Riemann problem can be proposed in
which the pressure p∗ is no longer obtained by the solution of equation (1.2). Rather,
p∗ is calculated by equating the relativistic invariant expression for the relative velocity
between the two initial states with the value given by the initial conditions.

When compared to equivalent approaches, our exact Riemann solver has some
advantages. First, we can remove the ambiguity mentioned above and determine
the generated flow pattern by simply comparing the relative velocity between the
two initial states with reference values constructed from the initial conditions of the
Riemann problem. This provides immediate information about which of the nonlinear
equations (one for every wave pattern) needs to be solved. Secondly, by knowing the
wave pattern we can produce an immediate bracketing of the solution. This gives
improved efficiency in the numerical root finding procedure. Finally, for one of the
wave patterns (i.e. for two rarefaction waves moving in opposite directions) our
method provides the solution of the relativistic Riemann problem in a closed analytic
form.

Because of its simplicity, the numerical implementation of our method is straight-
forward and can be accomplished with a much smaller number of lines of code. When
compared with other exact Riemann solvers (e.g. Martı́ and Müller 1999) it has also

† This approach is usually referred to as an ‘exact’ Riemann solver to distinguish it from the family
of so called ‘approximate’ Riemann solvers, where the system of equations to be solved is reduced to
quasi-linear form, thus avoiding any iterative procedure. See, for example, the approximate Riemann
solver of Roe (1981).
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proved to be computationally more efficient. In particular, when solving a generic
hydrodynamical problem (in which one solves for very simple Riemann problems)
the approach proposed here brackets the solution very closely and this produces
substantial computational improvements of up to 30%. For the cases discussed here
however, where very strong shocks are considered, the improvement is below 10%.

This paper briefly introduces our idea and is organized as follows: in § 2 we define
the mathematical set-up for the formulation of the Riemann problem in relativistic
hydrodynamics. In § 3 we determine the basic relativistic expressions linking the
velocities ahead of and behind a shock or a rarefaction wave. These expressions will
be used repeatedly in the following §§ 4–6, where will write explicit criteria for the
occurrence of the three possible wave patterns. Section 7 discusses how the criteria
can be used in an efficient numerical implementation of a Riemann solver and briefly
presents a comparison with performances of more traditional algorithms. Finally, § 8
presents our conclusions. Throughout, we use a system of units in which c = 1.

2. Setting up the relativistic Riemann problem
Consider a perfect fluid with four-velocity uµ = W (1, v, 0, 0) with W ≡ (1− v2)−1/2

being the Lorentz factor and with a stress-energy tensor

Tµν = (e+ p)uµuν + pηµν = ρhuµuν + pηµν , (2.1)

where µ = 0, . . . , 3, ηµν = diag(−1, 1, 1, 1) and e, p are the proper energy density and
pressure, respectively. Assume that the fluid obeys a polytropic equation of state

p = k(s)ργ = (γ − 1)ρε, (2.2)

where ρ is the proper rest mass density, γ is the adiabatic index, and k(s) is the
polytropic constant, dependent only on the specific entropy s (the latter is generally
assumed to be different in the two initial states). Straightforward expressions can be
written relating e and p to the specific enthalpy h and to the specific internal energy
ε of the fluid:

e = ρ(1 + ε) = ρ+
p

γ − 1
, (2.3)

h = 1 + ε+
p

ρ
= 1 +

p

ρ

(
γ

γ − 1

)
. (2.4)

Consider the fluid to consist of an initial left state (indicated with an index 1) and
an initial right state (indicated with an index 2), each having prescribed and different
values of uniform pressure, density and velocity.† The discontinuity between the two
states which has been constructed in this way will then decay, producing one of the
three wave patterns listed below:

(i) two shock waves, one moving towards the initial left state, and the other towards
the initial right state: LS←L∗CR∗S→R.

(ii) one shock wave and one rarefaction wave, the shock moving towards the initial
right state, and the rarefaction towards the initial left state (or vice versa if p2 > p1):
LR←L∗CR∗S→R.

† Note that hereafter we will consider the fluid to be of the same type in the two initial states.
In principle, in fact, the fluid in the two initial states might be governed by two different equations
of state or by polytropic equations of state with different polytropic indices. The formulation of the
problem in that case is equivalent to the one presented here for a single type of fluid but particular
attention must be paid to distinguishing the different components in the relevant expressions.
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(iii) two rarefaction waves, one moving towards the initial left state, and the other
towards the initial right state: LR←L∗CR∗R→R. A special case of this wave pattern
is produced when the two rarefaction waves leave a vacuum region behind them.

The basis of our approach lies in the possibility of determining a priori which of
these three wave patterns will actually result by simply comparing the value of the
special relativistic relative velocity between the initial left and right states,

v12 ≡ v1 − v2

1− v1v2

, (2.5)

with the values of the limiting relative velocities for the occurrence of the wave
patterns (i)–(iii). In this respect, our approach represents the relativistic generalization
of a similar analysis proposed in Newtonian hydrodynamics by Landau & Lifshitz
(1987) (see also Gheller 1997 for a numerical implementation). Mathematically, the
occurrence of the different cases can be distinguished because the relative velocity
(2.5) (for compactness we will hereafter refer to the relativistic invariant expression
as ‘relative velocity’) is a continuous monotonic function of the pressure p∗ across
the contact discontinuity. This is shown in figure 1 where we have plotted v12 as
a function of p∗ and it is proved mathematically in Appendix A. Note that the
curve shown in figure 1 is effectively produced by the continuous joining of three
different curves describing the relativistic relative velocity for the three different wave
patterns corresponding respectively to two shocks (2S, indicated as a dashed line), one
shock and one rarefaction wave (SR, indicated as a dotted line), and two rarefaction
waves (2R, indicated as a continuous line). The joining of the different curves occurs
at precise values of the relative velocity which we have indicated as (ṽ12)2S

, (ṽ12)SR ,
(ṽ12)2R

and which depend uniquely on the initial conditions of the two unperturbed
states. These three values of the relative velocity mark the extremes of three different
intervals on the vertical axis and correspond to the three different cases (i)–(iii).

Within this framework then, it is sufficient to compare the relative velocity between
the initial states (2.5) with the calculated values of the limiting relative velocities
(ṽ12)2S

, (ṽ12)SR , (ṽ12)2R
, to determine, in advance, which wave pattern will be produced.

This, in turn, determines the correct equation to solve and the correct bracketing
of the solution. In the following Sections we will discuss in detail how to derive
analytic expressions for the limiting relative velocities and use them efficiently within
a numerical code.

3. Limiting relative velocities: fundamental expressions
The expression for the relative velocity (2.5) is a relativistic invariant, but its

calculation can be considerably simplified if performed in an appropriate reference
frame. In practice, we will consider each of the three wave patterns (i)–(iii) as being
composed of two ‘discontinuity fronts’ (two shocks, two rarefaction waves, or one
of each) moving in opposite directions and separated by a region where a contact
discontinuity is present. In the case of a shock, in particular, it is useful to use a
reference frame comoving with the shock front, in which the relativistic expression
for the relative velocities ahead of (a) and behind (b) the shock takes the form (Taub
1978)

vab ≡ va − vb
1− vavb =

√
(pb − pa)(eb − ea)
(ea + pb)(eb + pa)

. (3.1)

In the case of a rarefaction wave, on the other hand, it is more convenient to use
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Figure 1. Relative velocity of the two initial states 1 and 2 as a function of the pressure at the
contact discontinuity. Note that the curve shown is given by the continuous joining of three different
curves describing the relative velocity corresponding respectively to two shocks (a dashed line), one
shock and one rarefaction wave (dotted line), and two rarefaction waves (continuous line). The
joining of the curves is indicated with filled dots. The inset shows a magnification for a smaller
range of p∗ and we have indicated with filled squares the limiting values for the relative velocities
(ṽ12)

2S
, (ṽ12)

SR
, (ṽ12)

2R

the Eulerian frame in which the initial states are measured and which has one of the
axes aligned with the direction of propagation of the wave front. In such a frame, the
flow velocity at the back of a rarefaction wave (i.e. behind the tail of the rarefaction
wave) can be expressed as a function of pressure at the back of the wave as

vb =
(1 + va)A±(pb)− (1− va)
(1 + va)A±(pb) + (1− va) . (3.2)

The quantity A±(p) in (3.2) is defined as (Martı́ & Müller 1994)

A±(p) ≡
{[

(γ − 1)1/2 − cs(p)
(γ − 1)1/2 + cs(p)

] [
(γ − 1)1/2 + cs(pa)

(γ − 1)1/2 − cs(pa)
]}±2/(γ−1)1/2

, (3.3)

with the ± signs corresponding to rarefaction waves propagating to the left (R←) and
to the right (R→) of the contact discontinuity, respectively. The quantity cs(p) in (3.3)
is the local sound speed which, for a polytropic equation of state, can be written as

cs =

√
γ(γ − 1)p

(γ − 1)ρ+ γp
. (3.4)

We can now use (3.2) to write an invariant expression for the relative velocity across
a rarefaction wave (i.e. the relative velocity of the fluid ahead of the rarefaction wave
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Figure 2. Schematic wave pattern in the pressure for the decay of a discontinuity generating two
shock waves propagating in opposite directions. The vertical solid lines show the position of the
shock fronts while the dot-dashed vertical line shows the position of the contact discontinuity. The
different arrows show the gas flow and the directions of propagation of the different fronts.

and behind the tail of the rarefaction wave) as

vab =
1− A±(pb)

1 + A±(pb)
. (3.5)

Expressions (3.1) and (3.5) are not yet in a useful form since they cannot be
combined to give (2.5). However, we can exploit the fact that they are relativistic
invariants to evaluate them in the rest frame of the contact discontinuity. The latter
is, by definition, comoving with the fluid behind the discontinuity fronts and within
such a frame we can set vb = 0 and use equations (3.1), (3.5) to obtain an explicit
expression for the velocity ahead of the wave front. The expressions for the velocities
ahead of both discontinuity fronts obtained in this way can then be combined to
evaluate expression (2.5).

In the following Sections we will apply the procedure outlined above to derive
the relative velocity of the left and right states for the three different wave patterns
(i)–(iii). We will denote with indices 3 and 3′ the quantities evaluated in the left (L∗)
and right (R∗) states behind the discontinuity fronts, and where p3 = p3′ , v3 = v3′ , and
ρ3 6= ρ3′ . Note also that in all of the different cases we will assume that p1 > p2, and
take the positive x-direction as being the one from the region 1 to the region 2 (an
alternative opposite choice is also possible).

4. LS←L∗CR∗S→R: two shock fronts
We start by considering the wave pattern produced by two shocks propagating

in opposite directions (see figure 2). This situation is characterized by a value of
the pressure downstream of the shocks which is larger than the pressures in the
unperturbed states, i.e. p3 > p1 > p2. Applying equation (3.1) to the shock front
moving towards the left and evaluating it in the reference frame of the contact
discontinuity, we can write the velocity ahead of the left propagating shock as

v1 =

√
(p3 − p1)(e3 − e1)

(e1 + p3)(e3 + p1)
. (4.1)

Similarly, we can apply equation (3.1) to the shock front moving towards the right
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and evaluate it in the frame comoving with the contact discontinuity to obtain that
the velocity ahead of the right propagating shock is

v2 = −
√

(p3 − p2)(e3′ − e2)

(e2 + p3)(e3′ + p2)
(4.2)

Equations (4.1) and (4.2) can now be used to derive the relativistic expression for the
relative velocity of the flow ahead of the two shocks (v12)2S

. As proved in Appendix A,
the expression for the relative velocity between the unperturbed states is a monotonic
function of p3 for all possible wave patterns. In particular, for the present choice of
initial data, this expression is a monotonically increasing function of p3. As a result,
the value of (v12)2S

can be used to construct a criterion for the occurrence of two
shocks propagating in opposite directions. In fact, since p1 is the smallest value that
p3 can take, two shocks will form if

v12 > (ṽ12)2S
≡
√

(p1 − p2)(ê− e2)

(ê+ p2)(e2 + p1)
, (4.3)

where

ê = ĥρ̂− p1 = ĥ
γp1

(γ − 1)(ĥ− 1)
− p1, (4.4)

and ĥ is the only positive root of the Taub adiabat (Taub 1978; Martı́ & Müller 1994)[
1 +

(γ − 1)(p2 − p3)

γp3

]
ĥ2 − (γ − 1)(p2 − p3)

γp3

ĥ+
h2(p2 − p3)

ρ2

− h2
2 = 0, (4.5)

when p3 → p1. Simple calculations reported in Appendix B show that the Newtonian
limit of (ṽ12)2S

corresponds to the expression derived by Landau & Lifshitz (1987).

5. LR←L∗CR∗S→R: one shock and one rarefaction wave
We next consider the wave pattern produced by one shock front propagating

towards the right and one rarefaction wave propagating in the opposite direction (see
figure 3). This situation is therefore characterized by p1 > p3 > p2.

Evaluating expression (3.5) in the reference frame comoving with the contact
discontinuity, we can evaluate the flow velocity ahead of the rarefaction wave to be

v1 =
1− A+(p3)

1 + A+(p3)
, (5.1)

where

A+(p3) ≡
{[

(γ − 1)1/2 − cs(p3)

(γ − 1)1/2 + cs(p3)

] [
(γ − 1)1/2 + cs(p1)

(γ − 1)1/2 − cs(p1)

]}2/(γ−1)1/2

. (5.2)

The flow velocity ahead of the shock front can be derived as in § 4 by evaluating
equation (3.1) in the reference frame of the contact discontinuity to get

v2 = −
√

(p3 − p2)(e3′ − e2)

(e3′ + p2)(e2 + p3)
, (5.3)

which, combined with (5.1), can be used to derive the relativistic expression for the
relative velocity of the fluids ahead of the shock and ahead of the rarefaction wave
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Figure 3. Schematic wave pattern in the pressure for the decay of the discontinuity into a shock
wave propagating towards the right and a rarefaction wave propagating in the opposite direction.
The vertical lines show the discontinuities formed (continuous for the shock front; dashed for the
head and the tail of the rarefaction wave; dot-dashed for the contact discontinuity) while the arrows
show their direction of propagation and that of the gas flow.

(v12)SR . As for (v12)2S
, it can be shown that (v12)SR is a monotonically increasing function

of p3 (see figure 1 and Appendix A for an analytic proof). Exploiting the knowledge
that for this wave pattern the pressure in the region between the two waves must
satisfy p2 < p3 < p1, we can establish that the criterion on the relative velocity for
there to be one shock and one rarefaction wave is

(ṽ12)SR =
1− A+(p3)

1 + A+(p3)

∣∣∣∣
p3=p2

< v12 6

√
(p1 − p2)(ê− e2)

(e2 + p1)(ê+ p2)
= (ṽ12)2S

. (5.4)

Note that the upper limit of (5.4) coincides with (ṽ12)2S
, which is the lower limit for the

occurrence of two shock waves (4.3) and whose Newtonian limit coincides with the
equivalent one found by Landau & Lifshitz (1987) (see Appendix B). Note also that
in the limit, p3 → p2, regions 1 and 2 are connected by a single rarefaction wave. In
this case the sound speed can be computed using p3 = p2 but with ρ3 = ρ1(p2/p1)

1/γ .
Finally, note that this is the only wave pattern in which v1 and v2 have the same sign
and it therefore includes the classical shock-tube problem, where v1 = v2 = 0.

6. LR←L∗CR∗R→R: two rarefaction waves
We now consider the wave pattern produced by two rarefaction waves propagating

in opposite directions (see figure 4). This situation is characterized by p1 > p2 > p3

and when the waves are sufficiently strong it might lead to a vacuum region (ρ3 = 0)
behind the rarefaction waves.

Following again the procedure discussed in the previous Section, we can determine
the values of the fluid velocities ahead of the two rarefaction waves as, respectively,

v1 = −A+(p3)− 1

A+(p3) + 1
, (6.1)

v2 =
1− A−(p3′)

1 + A−(p3′)
, (6.2)
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Figure 4. Schematic wave pattern in the pressure for the decay of the discontinuity into two
rarefaction waves propagating in opposite directions. The vertical lines show the discontinuities
formed (dashed for the head and the tail of the rarefaction waves; dot-dashed for the contact
discontinuity) while the arrows show their direction of propagation and that of the gas flow. Note
that the region downstream of the two rarefaction waves has a density ρ3 > 0.

where

A−(p3′) ≡
{[

(γ − 1)1/2 − cs(p3′)

(γ − 1)1/2 + cs(p3′)

] [
(γ − 1)1/2 + cs(p2)

(γ − 1)1/2 − cs(p2)

]}−2/(γ−1)1/2

. (6.3)

We have denoted by cs(p3′) the sound speed in the region 3′, which differs from the
one in region 3 because of the jump in the densities ρ3 and ρ3′ . The relative velocity
obtained using (6.1) and (6.2) is then

(v12)2R
= −A+(p3)− A−(p3′)

A+(p3) + A−(p3′)
. (6.4)

As for the relative velocities of the previous wave patterns, it can be shown that
(v12)2R

is a monotonically increasing function of p3 (see figure 1 and Appendix A for
an analytic proof) so that the criterion for the occurrence of two rarefaction waves
can be expressed as

(v12)2R

∣∣
p3=0

< v12 6 (v12)2R

∣∣
p3=p2

= (ṽ12)SR , (6.5)

where A−(p3 = p2) = 1 and therefore the upper limit for (6.5) coincides with the lower
limit for (5.4).

The condition (6.5) can also be expressed in a more useful form as

−S1 − S2

S1 + S2

< v12 6 −1− A+(p2)

1 + A+(p2)
, (6.6)

where the constants S1 and S2 are shorthand for

S1 ≡
[

(γ − 1)1/2 + cs(p1)

(γ − 1)1/2 − cs(p1)

]2/(γ−1)1/2

, (6.7)

S2 ≡
[

(γ − 1)1/2 + cs(p2)

(γ − 1)1/2 − cs(p2)

]−2/(γ−1)1/2

. (6.8)

An important property of equation (6.4) is that it can be inverted analytically. This
involves rewriting it in terms of a quartic equation in the unknown sound speed in the
region L∗ (see Appendix C for the explicit form of the equation). Once the relevant
real root of this equation has been calculated analytically, the value of the pressure
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p∗ can be found through a simple algebraic expression. In this case, therefore, the
solution of the exact relativistic Riemann problem can be found in an analytic closed
form.

We conclude the analysis of the different wave patterns with a comment on the
case of two rarefaction waves propagating in opposite directions and leaving behind
them a region with zero density and pressure. This situation occurs when the fluid
in regions 1 and 2 is moving sufficiently fast in opposite directions. This is the case
whenever the relative velocity between the two states ahead of the rarefaction waves
is less than or equal to the lower limit for (v12)2R

, i.e.

v12 6 (ṽ12)2R
≡ −S1 − S2

S1 + S2

. (6.9)

Also in this case, taking the Newtonian limit of (ṽ12)2R
we obtain the corresponding

expression derived by Landau & Lifshitz (1987) (see Appendix B). Finally, note that
when a vacuum is produced, v12 is no longer dependent on p3 and this branch of the
curve cannot be plotted in figure 1.

7. Numerical implementation
The core of most exact Riemann solvers, in both Newtonian and relativistic

hydrodynamics, is based on the numerical computation of the pressure in the regions
L∗ and R∗ that form behind the waves. The key property exploited when performing
the numerical calculation is that the velocity in such regions can be expressed as a
monotonic function of the pressure, i.e. vL∗ = vL∗(pL∗) and vR∗ = vR∗(pR∗). Since there
is no jump across a contact discontinuity in either the velocity or in the pressure,
the numerical solution of the Riemann problem consists then of finding the root
p∗ = pL∗ = pR∗ of the nonlinear equation

vL∗(p∗)− vR∗(p∗) = 0, (7.1)

where vL∗ , vR∗ have different functional forms according to the different wave patterns
produced. This method has two obvious disadvantages: (1) it cannot determine, using
the initial conditions, the wave pattern produced and thus which of the functional
forms to use for vL∗ , vR∗; (2) it cannot provide a straightforward bracketing interval
for the root. In practice, however, these difficulties are effectively balanced by efficient
algorithms based on a sequence of trial and error attempts that rapidly bracket the
root and determine the correct equation to solve (see, for instance, Martı́, & Müller
1999 and the algorithm presented therein).

The exact Riemann solver which we propose here differs from the one discussed
above mainly in that it avoids the disadvantages (1) and (2). In fact, as discussed in
§ 1, by comparing the relative velocity between the initial left and right states (v12)0

with the relevant limiting values constructed from the initial conditions (ṽ12)2S
, (ṽ12)SR ,

(ṽ12)2R
, we can determine both the wave pattern which will be produced and the

correct bracketing range in the pressure. Once this information has been obtained,
the Riemann problem can be solved either through the solution of equation (7.1)
or, equivalently, by looking for the value of the pressure p∗ which would produce
a relative velocity (v12)0. This latter approach, which we will be discussing in the
following, involves therefore the solution of the nonlinear equation

v12(p∗)− (v12)0 = 0, (7.2)

where v12(p∗) is given by the expressions for (v12)2S
or (v12)SR or (v12)2R

derived in §§ 4–6.
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Furthermore, in the case of two rarefaction waves, equation (7.2) can also be solved
analytically.

Besides providing direct information about the wave pattern produced, the correct
equation to solve and the relevant bracketing interval, our approach is also very
simple to implement numerically. In practice, the basic steps for the solution of the
Riemann problem can be summarized as follows:

(a) Evaluate from the initial conditions the three limiting relative velocities (ṽ12)2S
,

(ṽ12)SR , (ṽ12)2R
.

(b) Determine the wave pattern and the functional form of v12(p∗) by comparing
(v12)0 with the limiting values calculated in (a) and according to the scheme

(v12)0 > (ṽ12)2S
: LS←L∗CR∗S→R, v12(p∗) = (v12)2S

(ṽ12)SR < (v12)0 6 (ṽ12)2S
: LR←L∗CR∗S→R, v12(p∗) = (v12)SR

(ṽ12)2R
< (v12)0 6 (ṽ12)SR : LR←L∗CR∗R→R, v12(p∗) = (v12)2R

(v12)0 6 (ṽ12)2R
: LR←L∗CR∗R→R with vacuum, −

(c) According to the wave pattern found, determine the extremes pmax and pmin
of the pressure interval bracketing p∗. Within our conventions this is equivalent to
setting

LS←L∗CR∗S→R LR←L∗CR∗S→R LR←L∗CR∗R→R

pmin max(p1, p2) min(p1, p2) 0

pmax ∞ max(p1, p2) min(p1, p2)

Note that in practice, the upper limit for the pressure in the case of two shocks is
found by starting from a reasonable value above pmin, which is incremented until the
solution is effectively bracketed.

(d) Solve equation (7.2) and determine p∗.
(e) Complete the solution of the Riemann problem by computing the remaining

variables of the intermediate states L∗ and R∗.
We have implemented our algorithm for an exact Riemann solver and have tested

it for a range of Riemann problems. We have also compared the performance of
our algorithm with the ‘standard’ approach presented by Martı́ & Müller (1999) and
have found a systematic reduction in the computational costs for the same level of
accuracy in the solution. The quantitative efficiency improvement depends on the type
of problem under consideration. In the case of a generic hydrodynamical problem
(in which very simple Riemann problems are solved), our approach brackets the
solution very closely and this produces substantial computational improvements of
up to 30%. However, for the specific cases discussed in this paper, where very strong
shocks have been considered, the speed-up is smaller and of the order of 10%. It is
worth noting that such an improvement could reduce appreciably the computational
costs in three-dimensional relativistic hydrodynamics codes, where this operation is
repeated a very large number of times.

8. Conclusion
We have presented a new procedure for the numerical solution of the exact Riemann

problem in relativistic hydrodynamics. In this approach special attention is paid to
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the relativistic invariant expression for the relative velocity v12 of the unperturbed left
and right states. This has been shown to be a monotonic function of the pressure p∗
in the region formed between the wave fronts. The determination of this pressure is
the basic step in the solution of the exact Riemann problem.

The use of the relative velocity has a number of advantages over alternative exact
Riemann solvers discussed in the literature. In particular, it extracts the information
implicitly contained in the data for two initial states to deduce the wave pattern that
will be produced by the decay of the discontinuity between these two states. This,
in turn, allows an a priori determination of the interval in pressure bracketing p∗
and the correct functional form for the nonlinear equation whose root will solve the
exact Riemann problem. All of these advantages translate, in practice, into a simpler
algorithm to implement and an improved efficiency in the numerical solution of the
Riemann problem. Furthermore, in the case of two rarefaction waves propagating in
opposite directions (and in strict analogy with what happens in Newtonian hydrody-
namics), the use of the relative velocity allows the solution of the Riemann problem
in an analytic closed form.

Because of all of the advantages discussed above, its intrinsic simplicity of im-
plementation and the numerical efficiency gain it produces, this new exact Riemann
solver should be considered as an interesting alternative to the traditional exact Rie-
mann solver currently discussed in the literature. Investigations of the extension of
this approach to multi-dimensions are currently in progress.

It is a pleasure to thank J. A. Font, C. Gheller and J. C. Miller for useful
discussions. Financial support for this research has been provided by the Italian
Ministero dell’Università e della Ricerca Scientifica and by the EU Programme
‘Improving the Human Research Potential and the Socio-Economic Knowledge Base’
(Research Training Network Contract HPRN-CT-2000-00137).

Appendix A. Monotonicity of the relative velocity as function of p∗
We here prove that v12 is a monotonic function of p∗ for all of the possible wave

patterns. In particular, because of our choice of referring the initial left state as ‘1’ and
the initial right state as ‘2’, we will here show that v12 is a monotonically increasing
function of p∗.

Denoting by a′ the first derivative of the quantity a with respect to p∗ = p3 = p3′ ,
it is straightforward to obtain that the first derivative of (2.5) is

v′12 =
v′1(1− v2

2)− v′2(1− v2
1)

(1− v1v2)2
. (A 1)

Since v1 6 1, v2 6 1, the terms in the parentheses of (A 1) are always positive, and
the proof that v12 is monotonically increasing will follow if it can be shown that v′1
and −v′2 are both positive. We will do so for each of the three possible wave patterns.

Two shock fronts

Taking the derivative of the fluid velocity ahead of the left propagating shock front
(measured from the contact discontinuity) (cf. equation (4.1)) we obtain

v′1 =
(e1 + p1)

[
(e3 − e1)(e3 + p1) + (p3 − p1)(e1 + p3)e

′
3

]
2v1(e1 + p3)2(e3 + p1)2

. (A 2)
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Since the energy density is an increasing function of pressure, e′3 > 0; furthermore,
p3 > p1 and e3 > e1 for the wave pattern considered and v′1 > 0 as a result.
The equivalent expression for the derivative of the fluid velocity ahead of the right
propagating shock front (measured from the contact discontinuity) (cf. equation
(4.2)) can be obtained by replacing in equation (A 2) the indices 1 and 3 by 2 and 3′
respectively, i.e.

v′2 =
(e2 + p2)

[
(e3′ − e2)(e3′ + p2) + (p3′ − p2)(e2 + p3′)e

′
3′
]

2v2(e2 + p3′)2(e3′ + p2)2
. (A 3)

Since now for the wave pattern considered v2 < 0, p3′ > p2 and e3′ > e2, we are led to
conclude that −v′2 > 0, thus making the overall v′12 positive for any value of p3.

One shock and one rarefaction wave

In this case we only need to show that v′1 > 0 since for the velocity ahead of the right
propagating shock front we can use the results derived in (A 3). Taking the derivative
of expression (5.1) then yields

v′1 = − 2A′+(p3)

[1 + A+(p3)]2
, (A 4)

where

A′+(p3) = −4

∣∣∣∣ (γ − 1)1/2 + cs(p1)

(γ − 1)1/2 − cs(p1)

∣∣∣∣ A+(p3)
(2−√γ−1)/2

[(γ − 1)1/2 + cs(p3)]2
c′s(p3)

≡ −C1c
′
s(p3), (A 5)

where C1 > 0. When the sound speed cs(p3) is an increasing function of pressure, as
is the case for a polytropic equation of state (cf. equation (2.2)), v′1 > 0 and therefore
v′12 > 0.

Two rarefaction waves

We need to show in this case that v′2 < 0 since we can exploit the previous result
that v′1 > 0 where v1 is the fluid velocity ahead of the left propagating rarefaction
wave as measured from the contact discontinuity. In this case, taking the derivative
of expression (6.2) one obtains

v′2 = − 2A′−(p3′)

[1 + A−(p3′)]2
, (A 6)

where now

A′−(p3′) = 4

∣∣∣∣ (γ − 1)1/2 + cs(p2)

(γ − 1)1/2 − cs(p2)

∣∣∣∣ A−(p3′)
(2+
√
γ−1)/2

[(γ − 1)1/2 + cs(p3′)]2
c′s(p3′)

≡ C2c
′
s(p3′) (A 7)

with C2 > 0 and therefore v′2 < 0.

We have therefore shown that for all of the wave patterns considered v′1 > 0 and
−v′2 > 0, thus proving that v12 is always a monotonically increasing function of p∗.
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Appendix B. Newtonian limits of (ṽ12)
2S

, (ṽ12)
SR

, (ṽ12)
2R

We show here that the three limiting values of (ṽ12)2S
, (ṽ12)SR and (ṽ12)2R

reduce to
their Newtonian counterparts in the limit of v, cs → 0, and h → 1. In particular, we
will restrict ourselves to considering the case of a polytropic equation of state (2.2).

We start by considering the Newtonian limit of (ṽ12)2S
which is obtained when

p/e� 1 and e→ 1/V , with V = 1/ρ being the specific volume. In this case, then

(ṽ12)2S

∣∣∣∣
Newt

=

√
(p1 − p2)(ê− e2)

êe2

=
√

(p1 − p2)(1/e2 − 1/ê), (B 1)

which coincides with the corresponding expression derived by Landau & Lifshitz
(1987) but with inverted indices.

We next consider the Newtonian limit of (ṽ12)SR which is obtained when both
cs(p3)� 1 and cs(p1)� 1. In this case,

A+(p3) '
(

1− cs(p3)√
γ − 1

)4/
√
γ−1(

1 +
cs(p1)√
γ − 1

)4/
√
γ−1

'
(

1− 4cs(p3)

γ − 1

)(
1 +

4cs(p1)

γ − 1

)

' 1− 4

γ − 1
(cs(p3)− cs(p1)), (B 2)

so that the Newtonian limit of (ṽ12)SR is given by

(ṽ12)SR

∣∣∣∣
Newt

=
1− A+(p3)

2

∣∣∣∣
p3=p2

' − 2

γ − 1
cs(p1)

[
1− cs(p3)

cs(p1)

] ∣∣∣∣
p3=p2

. (B 3)

Bearing in mind that

cs(p3)

cs(p1)

∣∣∣∣
p3=p2

=

(
p2

p1

)(γ−1)/2γ

, (B 4)

we obtain

(ṽ12)SR

∣∣∣∣
Newt

= − 2

γ − 1
cs(p1)

[
1−

(
p2

p1

)(γ−1)/2γ
]
, (B 5)

which again coincides with the corresponding expression derived by Landau & Lifshitz
(1987) but with inverted indices.

Finally, we consider the Newtonian limit of (ṽ12)2R
for cs(p1), cs(p2)� 1. In this case

S1 ' 1 +
4cs(p1)

γ − 1
,

S2 ' 1− 4cs(p2)

γ − 1
, (B 6)
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so that the Newtonian limit is given by

(ṽ12)2R

∣∣∣∣
Newt

=
S2 − S1

S1 + S2

=

[
−4cs(p1)

γ − 1
− 4cs(p2)

γ − 1

] [
2 +

4

γ − 1
[cs(p1)− cs(p2)]

]−1

=

[
−2cs(p1)

γ − 1
− 2cs(p2)

γ − 1

] [
1− 2

γ − 1
[cs(p1)− cs(p2)]

]

= −2cs(p1)

γ − 1
− 2cs(p2)

γ − 1
. (B 7)

Once more, expression (B 7) coincides with the corresponding expression derived by
Landau & Lifshitz (1987) but with inverted indices.

Appendix C. A closed form solution in the case of two rarefaction waves

As discussed in §§ 6 and 7, when (ṽ12)2R
< (v12)0 < (ṽ12)SR , the initial conditions give

rise to two rarefaction waves and it is possible to derive a closed form solution for the
unknown pressure p∗. In this way we can, at least in principle, avoid any numerical
root finding procedure and determine the solution exactly. In this Appendix we first
derive this analytic solution in the context of relativistic hydrodynamics and then
calculate its Newtonian limit. We will restrict ourselves to considering the particular
case of a polytropic equation of state (2.2).

Using expression (3.4) we can write the pressures p3 and p3′ as functions of the
sound speeds cs(p3) and cs(p3′) which, for convenience, we will hereafter refer to as x
and x′ respectively:

p3 = k
−1/(γ−1)
1

[
x2(γ − 1)

γ(γ − 1)− γx2

]γ/(γ−1)

, (C 1)

p3′ = k
−1/(γ−1)
2

[
(x′)2(γ − 1)

γ(γ − 1)− γ(x′)2

]γ/(γ−1)

, (C 2)

where k1 = p1/ρ
γ
1 and k2 = p2/ρ

γ
2 are the two constants entering the polytropic

equation. Since p3 = p3′ = p∗, we can obtain the following relation between x′ and x:

(x′)2 ≡ γ(γ − 1)x2

γx2(1− α) + αγ(γ − 1)
, (C 3)

where α ≡ (k1/k2)
1/γ . The expression for the relative velocity (6.4) can also be written

as

A+(p3)

A−(p3′)
=

1− (v12)0

1 + (v12)0

, (C 4)

and we then use expressions (5.2) and (6.3) to expand the left-hand side of (C 4).
After some algebra we are then left with(

Γ − x
Γ + x

)(
Γ − x′
Γ + x′

)
=

[
Γ − cs(p2)

Γ + cs(p2)

] [
Γ − cs(p1)

Γ + cs(p1)

] [
1− (v12)0

1 + (v12)0

]Γ/2
, (C 5)
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where Γ 2 ≡ γ − 1 and the right-hand side of (C 5) is a constant which we denote

Π ≡
[
Γ − cs(p2)

Γ + cs(p2)

] [
Γ − cs(p1)

Γ + cs(p1)

] [
1− (v12)0

1 + (v12)0

]Γ/2
. (C 6)

Introducing now the auxiliary quantity

β ≡ 1 +Π

1−Π , (C 7)

expression (C 5) can be written as

(x′)2 =

[
Γ (xβ − Γ )

x− Γβ
]2

. (C 8)

Comparing (C 3) and (C 8) gives a fourth-order equation in the unknown sound
velocity x:

a0x
4 + a1x

3 + a2x
2 + a3x+ a4 = 0, (C 9)

where

a0 ≡ 1− β2(1− α), (C 10)

a1 ≡ −2Γαβ, (C 11)

a2 ≡ Γ 2(1− α)(β2 − 1), (C 12)

a3 ≡ 2Γ 3αβ, (C 13)

a4 ≡ −αΓ 4. (C 14)

The analytic solution of equation (C 9) will yield at least two real roots, one of which
will be the physically acceptable one, i.e. positive, less than one, and such that the
pressure p∗ falls in the relevant bracketing interval.

In its Newtonian limit, equation (C 9) reduces to a second-order equation in the
unknown sound velocity (

1

α
− 1

)
x2 + 2Σx− Σ2 = 0, (C 15)

where

Σ ≡ cs(p1) + cs(p2) +
(γ − 1)

2
v12, (C 16)

and v12 = v1 − v2. The fact that the Newtonian Riemann problem in the case of two
rarefaction waves can be solved analytically is well known and is the basis of the
so-called ‘two rarefaction approximate Riemann solver’ (Toro 1997).
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